Solar-driven interface water evaporation is an energy-saving, environmentally friendly, and efficient seawater desalination and wastewater treatment technology. However, some challenges still restrict its further industrial development, such as its complex preparation, heavy metal pollution, and insufficient energy utilization. In this study, a photothermal layer based on flower-shaped carbon nanoparticles is presented for highly efficient solar-driven interface evaporation for water treatment applications. The results show that the surface of the prepared carbon nanomaterials presents a flower-shaped structure with an excellent light absorption capacity and a large specific surface area. Moreover, the C-5.4 (Carbon-5.4) sample has an evaporation rate of 1.87 kg/m 2 /h and an evaporation efficiency of 87%-far higher than most photothermal materials. In addition, carbon nanomaterials have an excellent ion scavenging capacity, dye purification capacity, and outdoor practical performance. This study provides a new solution for the application of carbon nanomaterials in the field of water purification.