Login / Signup

Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation.

Yi LuoNima Mesgarani
Published in: IEEE/ACM transactions on audio, speech, and language processing (2019)
Single-channel, speaker-independent speech separation methods have recently seen great progress. However, the accuracy, latency, and computational cost of such methods remain insufficient. The majority of the previous methods have formulated the separation problem through the time-frequency representation of the mixed signal, which has several drawbacks, including the decoupling of the phase and magnitude of the signal, the suboptimality of time-frequency representation for speech separation, and the long latency of the entire system. To address these shortcomings, we propose a fully-convolutional time-domain audio separation network (Conv-TasNet), a deep learning framework for end-to-end time-domain speech separation. Conv-TasNet uses a linear encoder to generate a representation of the speech waveform optimized for separating individual speakers. Speaker separation is achieved by applying a set of weighting functions (masks) to the encoder output. The modified encoder representations are then inverted back to the waveforms using a linear decoder. The masks are found using a temporal convolutional network (TCN) consisting of stacked 1-D dilated convolutional blocks, which allows the network to model the long-term dependencies of the speech signal while maintaining a small model size. The proposed Conv-TasNet system significantly outperforms previous time-frequency masking methods in separating two- and three-speaker mixtures. Additionally, Conv-TasNet surpasses several ideal time-frequency magnitude masks in two-speaker speech separation as evaluated by both objective distortion measures and subjective quality assessment by human listeners. Finally, Conv-TasNet has a significantly smaller model size and a much shorter minimum latency, making it a suitable solution for both offline and real-time speech separation applications. This study therefore represents a major step toward the realization of speech separation systems for real-world speech processing technologies.
Keyphrases
  • liquid chromatography
  • hearing loss
  • deep learning
  • mass spectrometry
  • neural network
  • endothelial cells
  • machine learning
  • artificial intelligence
  • depressive symptoms
  • sleep quality
  • network analysis