Login / Signup

High-Speed Infrared Radiation Thermometer for the Investigation of Early Stage Explosive Development and Fireball Expansion.

Matthew J HobbsAndrew D BarrScott WoolfordDain FarrimondSam D ClarkeAndrew TyasJon Raffe Willmott
Published in: Sensors (Basel, Switzerland) (2022)
The understanding of blast loads is critical for the development of infrastructure that protects against explosions. However, the lack of high-quality experimental work on the characterisation of such loads prevents a better understanding of many scenarios. Blast loads are typically characterised by use of some form of pressure gauge, from which the temperature can be inferred from a pressure measurement. However, such an approach to temperature measurement is limited; it assumes ideal gas laws apply throughout, which may not be the case for high temperature and pressure scenarios. In contrast, infrared radiation thermometers (IRTs) perform a measurement of temperature based upon the emitted radiance from the target object. The IRTs can measure fast changes in transient temperature, making them seemingly ideal for the measurement of a fireball's temperature. In this work, we present the use of a high-speed IRT for the measurement of early-stage explosive development and fireball expansion within a confined blast, with the temperature of the explosive fireball measured from its emitted radiance. The temperature measured by the IRT was corroborated against the temperature inferred from a pressure gauge measurement; both instruments measured the same temperature from the quasi-static pressure (QSP) point onwards. Before the QSP point, it is deduced that the IRT measures the average temperature of the fireball over a wide field-of-view (FOV), as opposed to that inferred from the singular shocks detected by the pressure gauge. Therefore, use of an IRT, in tandem with a pressure gauge, provides a potential invaluable measurement technique for the characterisation the early stages of a fireball as it develops and expands.
Keyphrases