Login / Signup

A Simple and Cost-Effective FeCl 3 -Catalyzed Functionalization of Cellulose Nanofibrils: Toward Adhesive Nanocomposite Materials for Medical Implants.

Evgenii TikhomirovAntonio FranconettiMathias JohanssonCorine SandströmElin CarlssonBrittmarie AnderssonNils P HailerNatalia FerrazCarlos Palo-Nieto
Published in: ACS applied materials & interfaces (2024)
In the present work, we explored Lewis acid catalysis, via FeCl 3 , for the heterogeneous surface functionalization of cellulose nanofibrils (CNFs). This approach, characterized by its simplicity and efficiency, facilitates the amidation of nonactivated carboxylic acids in carboxymethylated cellulose nanofibrils (c-CNF). Following the optimization of reaction conditions, we successfully introduced amine-containing polymers, such as polyethylenimine and Jeffamine, onto nanofibers. This introduction significantly enhanced the physicochemical properties of the CNF-based materials, resulting in improved characteristics such as adhesiveness and thermal stability. Reaction mechanistic investigations suggested that endocyclic oxygen of cellulose finely stabilizes the transition state required for further functionalization. Notably, a nanocomposite, containing CNF and a branched low molecular weight polyethylenimine (CNF-PEI 800), was synthesized using the catalytic reaction. The composite CNF-PEI 800 was thoroughly characterized having in mind its potential application as coating biomaterial for medical implants. The resulting CNF-PEI 800 hydrogel exhibits adhesive properties, which complement the established antibacterial qualities of polyethylenimine. Furthermore, CNF-PEI 800 demonstrates its ability to support the proliferation and differentiation of primary human osteoblasts over a period of 7 days.
Keyphrases
  • ionic liquid
  • aqueous solution
  • silver nanoparticles
  • healthcare
  • endothelial cells
  • drug delivery
  • signaling pathway
  • soft tissue
  • mass spectrometry
  • carbon nanotubes
  • anti inflammatory