Login / Signup

DFT Study on the Mechanism of Iron-Catalyzed Diazocarbonylation.

Tímea R KéglLászló T MikaTamás Kégl
Published in: Molecules (Basel, Switzerland) (2020)
The mechanism of the carbonylation of diazomethane in the presence of iron-carbonyl-phosphine catalysts has been investigated by means of DFT calculations at the M06/def-TZVP//B97D3/def2-TZVP level of theory, in combination with the SMD solvation method. The reaction rate is determined by the formation of the coordinatively unsaturated doublet-state Fe(CO)3(P) precursor followed by the diazoalkane coordination and the N2 extrusion. The free energy of activation is predicted to be 18.5 and 28.2 kcal/mol for the PF3 and PPh3 containing systems, respectively. Thus, in the presence of less basic P-donor ligands with stronger π-acceptor properties, a significant increase in the reaction rate can be expected. According to energy decomposition analysis combined with natural orbitals of chemical valence (EDA-NOCV) calculations, diazomethane in the Fe(CO)3(phosphine)(η1-CH2N2) adduct reveals a π-donor-π-acceptor type of coordination.
Keyphrases