Login / Signup

Tetrakis(4-pyridylphenyl)ethylene-based Zinc Metal-Organic Framework with Aggregation-Induced Chemiluminescence Emission on a Paper Platform for Formaldehyde Detection in Breath.

Yanli GuoYue HouCongcong LvXiaohu MaMin YangYan JinBaoxin LiWei Liu
Published in: Analytical chemistry (2022)
Volatile formaldehyde (FA) in exhaled breath (EB) is considered as a biomarker for lung cancer (LC). On-the-spot selective and sensitive detection of gaseous FA is rather important for LC screening and diagnosis. Herein, a tetrakis(4-pyridylphenyl)ethylene (Py-TPE)-based zinc metal-organic framework (MOF) with excellent aggregation-induced emission (AIE) property was utilized for absorption and selective detection of FA in EB. The porous Zn-Py-TPE served as a gaseous confinement cavity for the adsorption of FA in EB. Interestingly, Zn-Py-TPE was aggregated on paper, and then aggregation-induced chemiluminescence (CL) emission can be triggered by only adding bis(2,4,6-trichlorophenyl)oxalate (TCPO). Though without H 2 O 2 , the CL of Zn-Py-TPE-TCPO was enhanced greatly by FA. FA promoted the aggregation of Zn-Py-TPE on paper by forming halogen bonding between FA and Zn-Py-TPE, which contributed to the better selectivity. FA can also stimulate the production of more singlet oxygen ( 1 O 2 ) in the Zn-Py-TPE-TCPO CL system. Hence, FA could be detected via the proposed Zn-Py-TPE-TCPO system with a quantification linear range of 1.0-100.0 ppb and detection limit of 0.3 ppb. This portable, low-cost, and sensitive paper-based platform can achieve trace FA detection in EB and is expected to provide an on-the-spot screening platform for lung cancer.
Keyphrases