Login / Signup

Reactivity of the Polyamide Membrane Monomer with Free Chlorine: Role of Bromide.

Kun HuangKeith P ReberMichael D ToomeyJohn A HowarterAmisha D Shah
Published in: Environmental science & technology (2021)
Aromatic polyamide-based membranes are widely used for reverse osmosis (RO) and nanofiltration (NF) treatment but degrade when exposed to free chlorine (HOCl/OCl-). The reaction mechanisms with free chlorine were previously explored, but less is known about the role of bromide (Br-) in these processes. Br- may impact these reactions by reacting with HOCl to form HOBr, which then triggers other brominating agents (Br2O, Br2, BrOCl, and BrCl) to form. This study examined the reactivities of these brominating agents with a polyamide monomer model compound, benzanilide (BA), and a modified version of it, N-CH3-BA. The results indicated that all these brominating agents only attacked the aromatic ring adjacent to the amide N, rather than the amide N, different from the previously examined chlorinating agents (HOCl, OCl-, and Cl2) that attacked both sites. Orton rearrangement was not observed. Species-specific rate constants (ki, M-1 s-1) between BA and HOBr, Br2O, Br2, BrOCl, and BrCl were determined to be (5.3 ± 1.2) × 10-2, (1.2 ± 0.4) × 101, (3.7 ± 0.2) × 102, (2.2 ± 0.6) × 104, and (6.6 ± 0.9) × 104 M-1 s-1, respectively, such that kBrCl > kBrOCl > kBr2 > kBr2O > kHOBr. N-CH3-BA exhibited lower reactivity than BA. Model predictions of BA loss during chlorination with varied Br- and/or Cl- concentrations were established. These findings will ultimately enable membrane degradation and performance loss following chlorination in mixed halide solutions to be better predicted during pilot- and full-scale NF and RO treatment.
Keyphrases
  • drinking water
  • molecularly imprinted
  • amino acid
  • combination therapy
  • lymph node
  • mass spectrometry
  • locally advanced