Multiple phosphorylations control recruitment of the KMN network onto kinetochores.
Masatoshi HaraMariko AriyoshiEi-Ichi OkumuraTetsuya HoriTatsuo FukagawaPublished in: Nature cell biology (2018)
To establish a functional kinetochore, the constitutive centromere-associated network (CCAN) forms a foundation on the centromere and recruits the KMN network, which directly binds to spindle microtubules. The CENP-C and CENP-T pathways in the CCAN recruit the KMN network to kinetochores, independently. The CENP-C pathway has been considered the major scaffold for the KMN network in vertebrate CCAN. However, we demonstrate that it is mainly the CENP-T pathway that recruits the KMN network onto the kinetochores and that CENP-T-KMN interactions are essential in chicken DT40 cells. By contrast, less Ndc80 binds to the CENP-C pathway in mitosis and the Mis12-CENP-C association is decreased during mitotic progression, which is consistent with the finding that the Mis12 complex-CENP-C binding is dispensable for cell viability. Furthermore, we find that multiple phosphoregulations of CENP-T and the Mis12 complex make the CENP-T pathway dominant. These results provide key insights into kinetochore dynamics during mitotic progression.