Login / Signup

Inhibiting bridge integrator 2 phosphorylation leads to improved oocyte quality, ovarian health and fertility in aging and after chemotherapy in mice.

Feng-Yu ZhuLi-Li WangTie-Gang MengRuo-Lei WangZhi-Xia YangYing CaoGang-Yi ZhuZhen JinLei-Lei GaoWen-Tao ZengZhen-Bo WangQian-Qian ShaDong Zhang
Published in: Nature aging (2021)
Female ovaries degenerate about 20 years earlier than testes leading to reduced primordial follicle reserve and a reduction in oocyte quality. Here we found that bridge integrator 2 (BIN2) is enriched in mouse ovaries and oocytes and that global knockout of this protein improves both female fertility and oocyte quality. Quantitative ovarian proteomics and phosphoproteomics showed that Bin2 knockout led to a decrease in phosphorylated ribosomal protein S6 (p-RPS6), a component of the mammalian target of rapamycin pathway and greatly increased nicotinamide nucleotide transhydrogenase (NNT), the free-radical detoxifier. Mechanistically, we find that phosphorylation of BIN2 at Thr423 and Ser424 leads to its translocation from the membrane to the cytoplasm, subsequent phosphorylation of RPS6 and inhibition of Nnt translation. We synthesized a BIN2-penetrating peptide (BPP) designed to inhibit BIN2 phosphorylation and found that a 3-week BPP treatment improved primordial follicle reserve and oocyte quality in aging and after chemotherapy-induced premature ovarian failure without discernible side effects.
Keyphrases
  • chemotherapy induced
  • quality improvement
  • healthcare
  • public health
  • mass spectrometry
  • mental health
  • signaling pathway
  • type diabetes
  • adipose tissue
  • social media
  • metabolic syndrome
  • germ cell