Rapid Profiling of Tumor-Immune Interaction Using Acoustically Assembled Patient-Derived Cell Clusters.
Zheng AoZhuhao WuHongwei CaiLiya HuXiang LiConnor KaurichJackson ChangMingxia GuLiang ChengXin LuFeng GuoPublished in: Advanced science (Weinheim, Baden-Wurttemberg, Germany) (2022)
Tumor microenvironment crosstalk, in particular interactions between cancer cells, T cells, and myeloid-derived suppressor cells (MDSCs), mediates tumor initiation, progression, and response to treatment. However, current patient-derived models such as tumor organoids and 2D cultures lack some essential niche cell types (e.g., MDSCs) and fail to model complex tumor-immune interactions. Here, the authors present the novel acoustically assembled patient-derived cell clusters (APCCs) that can preserve original tumor/immune cell compositions, model their interactions in 3D microenvironments, and test the treatment responses of primary tumors in a rapid, scalable, and user-friendly manner. By incorporating a large array of 3D acoustic trappings within the extracellular matrix, hundreds of APCCs can be assembled within a petri dish within 2 min. Moreover, the APCCs can preserve sensitive and short-lived (≈1 to 2-day lifespan in vivo) tumor-induced MDSCs and model their dynamic suppression of T cell tumor toxicity for up to 24 h. Finally, using the APCCs, the authors succesully model the combinational therapeutic effect of a multi-kinase inhibitor targeting MDSCs (cabozantinib) and an anti-PD-1 immune checkpoint inhibitor (pembrolizumab). The novel APCCs may hold promising potential in predicting treatment response for personalized cancer adjuvant therapy as well as screening novel cancer immunotherapy and combinational therapy.