Third-Order Unitary Coupled Cluster (UCC3) for Excited Electronic States: Efficient Implementation and Benchmarking.
Manuel HodeckerSebastian M ThielenJunzi LiuDirk R RehnAndreas DreuwPublished in: Journal of chemical theory and computation (2020)
The efficient implementation of the third-order unitary coupled-cluster scheme (UCC3) for the calculation of excited electronic states is reported. The UCC3 scheme and its second-order UCC2 variant have been benchmarked and compared to Jacquemin's recently introduced, as well as Thiel's well-established, benchmark sets for excitation energies and oscillator strengths. For the latter, the calculation of 134 excited singlet and 71 excited triplet states of 28 small- to medium-sized organic molecules has revealed that UCC2 exhibits a mean error and standard deviation of 0.36 ± 0.41 eV for singlet states and 0.22 ± 0.21 eV for triplet states, whereas UCC3 revealed an accuracy of 0.06 ± 0.27 eV for singlet and -0.22 ± 0.15 eV for triplet states. In addition, the oscillator strengths obtained with effective transition moments correct through second order in perturbation theory are in very good agreement with literature data.