Login / Signup

Design and Synthesis of NTU-9/C 3 N 4 Photocatalysts: Effects of NTU-9 Content and Composite Preparation Method.

Damian MakowskiWojciech LisowskiMateusz A BalukTomasz KlimczukBeata Bajorowicz
Published in: Materials (Basel, Switzerland) (2023)
Hybrid materials based on graphitic carbon nitride (g-C 3 N 4 ) and NTU-9 metal-organic frameworks (MOF) were designed and prepared via solvothermal synthesis and calcination in air. The as-prepared photocatalysts were subsequently characterized using Brunauer-Emmett-Teller (BET) analysis, UV-Vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) emission spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The obtained NTU-9/C 3 N 4 composites showed a greatly improved photocatalytic performance for the degradation of toluene in the gas phase under LED visible-light irradiation (λ max = 415 nm). The physicochemical properties and photocatalytic activities of the obtained NTU-9/C 3 N 4 materials were tuned by varying the NTU-9 content (5-15 wt%) and preparation method of the composite materials. For composites prepared by calcination, the photocatalytic activity increased with decreasing NTU-9 content as a result of the formation of TiO 2 from the MOFs. The best photocatalytic performance (65% of toluene was photodegraded after 60 min) was achieved by the NTU-9/C 3 N 4 sample prepared via the solvothermal method and containing 15 wt% MOF, which can be attributed to the appropriate amount and stable combination of composite components, efficient charge separation, and enhanced visible-light absorption ability. The photocatalytic mechanisms of the prepared hybrid materials depending on the preparation method are also discussed.
Keyphrases
  • visible light
  • electron microscopy
  • metal organic framework
  • high resolution
  • single molecule
  • photodynamic therapy
  • computed tomography
  • magnetic resonance imaging
  • mass spectrometry