Login / Signup

Foraging behavior in visual search: A review of theoretical and mathematical models in humans and animals.

Marcos Bella-FernándezManuel Suero SuñéBeatriz Gil-Gómez de Liaño
Published in: Psychological research (2021)
Visual search (VS) is a fundamental task in daily life widely studied for over half a century. A variant of the classic paradigm-searching one target among distractors-requires the observer to look for several (undetermined) instances of a target (so-called foraging) or several targets that may appear an undefined number of times (recently named as hybrid foraging). In these searches, besides looking for targets, the observer must decide how much time is needed to exploit the area, and when to quit the search to eventually explore new search options. In fact, visual foraging is a very common search task in the real world, probably involving additional cognitive functions than typical VS. It has been widely studied in natural animal environments, for which several mathematical models have been proposed, and just recently applied to humans: Lévy processes, composite and area-restricted search models, marginal value theorem, and Bayesian learning (among others). We conducted a systematic search in the literature to understand those mathematical models and study its applicability in human visual foraging. The review suggests that these models might be the first step, but they seem to be limited to fully comprehend foraging in visual search. There are essential variables involving human visual foraging still to be established and understood. Indeed, a jointly theoretical interpretation based on the different models reviewed could better account for its understanding. In addition, some other relevant variables, such as certain individual differences or time perception might be crucial to understanding visual foraging in humans.
Keyphrases
  • endothelial cells
  • systematic review
  • induced pluripotent stem cells
  • replacement therapy