Octupole moment driven free charge generation in partially chlorinated subphthalocyanine for planar heterojunction organic photodetectors.
Aniket RanaSong Yi ParkChiara LabantiFeifei FangSungyoung YunYifan DongEmily J YangDavide NodariNicola GaspariniJeong-Il ParkJisoo ShinDaiki MinamiKyung-Bae ParkJi-Seon KimJames R DurrantPublished in: Nature communications (2024)
In this study, high-performance organic photodetectors are presented which utilize a pristine chlorinated subphthalocyanine photoactive layer. Optical and optoelectronic analyses indicate that the device photocurrent is primarily generated through direct charge generation within the chlorinated subphthalocyanine layer, rather than exciton separation at layer interfaces. Molecular modelling suggests that this direct charge generation is facilitated by chlorinated subphthalocyanine high octupole moment (-80 DÅ 2 ), which generates a 200 meV shift in molecular energetics. Increasing the thickness of chlorinated subphthalocyanine leads to faster response time, correlated with a decrease in trap density. Notably, photodetectors with a 50 nm thick chlorinated subphthalocyanine photoactive layer exhibit detectivities approaching 10 13 Jones, with a dark current below 10 -7 A cm -2 up to -5 V. Based on these findings, we conclude that high octupole moment molecular semiconductors are promising materials for high-performance organic photodetectors employing single-component photoactive layer.