Login / Signup

Triarylborane-Appended Anils and Boranils: Solid-State Emission, Mechanofluorochromism, and Phosphorescence.

Rajendra Prasad NandiPagidi SudhakarNeena K KalluvettukuzhyPakkirisamy Thilagar
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2020)
Herein, the design, synthesis, optical properties, and mechanofluorochromism characteristics of a series of conjugates having covalently linked triarylborane (TAB) and anil/boranil units (TAB-anil: 1 a-3 a and TAB-boranil: 1-3) are reported. The electronic interactions between TAB and anil/boranil in 1 a-3 a and 1-3 were fine-tuned by changing the boryl moiety's position on the phenyl spacer connecting the BMes2 (Mes=mesityl) and anil/boranil units. A boryl moiety at the meta position (1 a) of the phenyl spacer stabilizes the enolic form (E-OH), whereas a boryl moiety at the para position (2 a and 3 a) stabilizes the keto form (Z-NH) in the solid state. However, in solution 1 a, 2 a, and 3 a exhibit keto-enol tautomerism in both ground and excited states. Compounds 1 a-3 a and 1-3 show red-shifted absorption compared with 4 a and 4, which are devoid of TAB moieties, which indicate effective participation of an empty p orbital on the boron center in 1 a-3 a and 1-3. Compounds 1 and 2 showed fluorescence variations in response to external stimuli such as mechanical grinding. Long phosphorescence lifetimes of 18-46 ms were observed for compounds 1-3. The observed optical properties of 1 a-3 a and 1-3 are rationalized in the context of quantum mechanical calculations.
Keyphrases
  • solid state
  • room temperature
  • molecular dynamics
  • energy transfer
  • mass spectrometry
  • multiple sclerosis
  • physical activity
  • air pollution
  • density functional theory
  • ms ms
  • cancer therapy