Login / Signup

Prognostic Value of Stress Perfusion Cardiac MRI in Cardiovascular Disease: A Systematic Review and Meta-Analysis of the Effects of the Scanner, Stress Agent, and Analysis Technique.

Qing FuSamer AlabedStephen P HooleGeorge R AbrahamJonathan Richard Weir-McCall
Published in: Radiology. Cardiothoracic imaging (2024)
Purpose To perform a systematic review and meta-analysis to assess the prognostic value of stress perfusion cardiac MRI in predicting cardiovascular outcomes. Materials and Methods A systematic literature search from the inception of PubMed, Embase, Web of Science, and China National Knowledge Infrastructure until January 2023 was performed for articles that reported the prognosis of stress perfusion cardiac MRI in predicting cardiovascular outcomes. The quality of included studies was assessed using the Quality in Prognosis Studies tool. Reported hazard ratios (HRs) of univariable regression analyses with 95% CIs were pooled. Comparisons were performed across different analysis techniques (qualitative, semiquantitative, and fully quantitative), magnetic field strengths (1.5 T vs 3 T), and stress agents (dobutamine, adenosine, and dipyridamole). Results Thirty-eight studies with 58 774 patients with a mean follow-up time of 53 months were included. There were 1.9 all-cause deaths and 3.5 major adverse cardiovascular events (MACE) per 100 patient-years. Stress-inducible ischemia was associated with a higher risk of all-cause mortality (HR: 2.55 [95% CI: 1.89, 3.43]) and MACE (HR: 3.90 [95% CI: 2.69, 5.66]). For MACE, pooled HRs of qualitative, semiquantitative, and fully quantitative methods were 4.56 (95% CI: 2.88, 7.22), 3.22 (95% CI: 1.60, 6.48), and 1.78 (95% CI: 1.39, 2.28), respectively. For all-cause mortality, there was no evidence of a difference between qualitative and fully quantitative methods ( P = .79). Abnormal stress perfusion cardiac MRI findings remained prognostic when subgrouped based on underlying disease, stress agent, and field strength, with HRs of 3.54, 2.20, and 3.38, respectively, for all-cause mortality and 3.98, 3.56, and 4.21, respectively, for MACE. There was no evidence of subgroup differences in prognosis between field strengths or stress agents. There was significant heterogeneity in effect size for MACE outcomes in the subgroups assessing qualitative versus quantitative stress perfusion analysis, underlying disease, and field strength. Conclusion Stress perfusion cardiac MRI is valuable for predicting cardiovascular outcomes, regardless of the analysis method, stress agent, or magnetic field strength used. Keywords: MR-Perfusion, MRI, Cardiac, Meta-Analysis, Stress Perfusion, Cardiac MR, Cardiovascular Disease, Prognosis, Quantitative © RSNA, 2024 Supplemental material is available for this article.
Keyphrases