Control of Proton-Conductive Behavior with Nanoenvironment within Metal-Organic Materials.
Ken-Ichi OtakeHiroshi KitagawaPublished in: Small (Weinheim an der Bergstrasse, Germany) (2021)
Solid-state proton-conductive materials have been of great interest for several decades due to their promising application as electrolytes in fuel cells and electrochemical devices. Metal-organic materials (MOMs) have recently been intensively investigated as a new type of proton-conductive materials. The highly crystalline nature and structural designability of MOMs make them advantageous over conventional noncrystalline proton-conductive materials-the detailed investigation of the structure-property relationship is feasible on MOM-based proton conductors. This review aims to summarize and examine the fundamental principles and various design strategies on proton-conductive MOMs, and shed light on the nanoconfinement effects as well as the importance of hydrophobicity on specific occasions, which have been often disregarded. Besides, challenges and future prospects on this field are presented.