Novel instantly-dispersible nanocarrier powder system (IDNPs) for intranasal delivery of dapoxetine hydrochloride: in-vitro optimization, ex-vivo permeation studies, and in-vivo evaluation.
Rehab Nabil ShammaRehab N ShammaEmad B BasaliousMohamed M El-NabarawiSaadi A TayelPublished in: Drug development and industrial pharmacy (2018)
Dapoxetine (D) suffers from poor oral bioavailability (42%) due to extensive metabolism in the liver. The aim of this study was to enhance the bioavailability of D via preparing instantly-dispersible nanocarrier powder system (IDNPs) for intranasal delivery of D. IDNPs were prepared using the thin film hydration technique, followed by freeze-drying to obtain easily reconstituted powder providing rapid and ready method of administration. The produced nanocarrier systems were evaluated for drug content, entrapment efficiency percentage, particle size, polydispersity index, zeta potential, and drug payload. The optimized nanocarrier system was morphologically evaluated via transmission electron microscopy and the optimized freeze-dried IDNPs were evaluated for ex-vivo permeation and in-vivo pharmacokinetic studies in rabbits following intranasal and oral administration. The relative bioavailability of D after intranasal administration of freeze-dried IDNPs was about 235.41% compared to its corresponding oral nanocarrier formulation. The enhanced D permeation and improved bioavailability suggest that IDNPs could be a promising model for intranasal delivery of drugs suffering from hepatic first pass effect.