Login / Signup

Random expert sampling for deep learning segmentation of acute ischemic stroke on non-contrast CT.

Sophie OstmeierBrian AxelrodYongkai LiuYannan YuBin JiangNicole YuenBenjamin PulliBenjamin F J VerhaarenHussam KakaMax WintermarkPatrik MichelAbdelkader MahammediChristian FederauMaarten G LansbergGregory W AlbersMichael E MoseleyGregory ZaharchukNicholas J Leeper
Published in: Journal of neurointerventional surgery (2024)
The random model for ischemic injury delineation on non-contrast CT surpassed the inter-expert agreement ((1) to (2)) and the performance of the majority model ((1) to (3)). We showed that the random model volumetric measures of the model were consistent with 24 hour follow-up DWI.
Keyphrases
  • deep learning
  • acute ischemic stroke
  • contrast enhanced
  • magnetic resonance
  • computed tomography
  • magnetic resonance imaging
  • image quality
  • oxidative stress
  • dual energy