Login / Signup

Extreme quantile estimation for partial functional linear regression models with heavy-tailed distributions.

Hanbing ZhuYehua LiBaisen LiuWeixin YaoRiquan Zhang
Published in: The Canadian journal of statistics = Revue canadienne de statistique (2021)
In this article, we propose a novel estimator of extreme conditional quantiles in partial functional linear regression models with heavy-tailed distributions. The conventional quantile regression estimators are often unstable at the extreme tails due to data sparsity, especially for heavy-tailed distributions. We first estimate the slope function and the partially linear coefficient using a functional quantile regression based on functional principal component analysis, which is a robust alternative to the ordinary least squares regression. The extreme conditional quantiles are then estimated by using a new extrapolation technique from extreme value theory. We establish the asymptotic normality of the proposed estimator and illustrate its finite sample performance by simulation studies and an empirical analysis of diffusion tensor imaging data from a cognitive disorder study.
Keyphrases
  • climate change
  • big data
  • magnetic resonance imaging
  • magnetic resonance
  • diffusion weighted imaging
  • contrast enhanced