A Novel Fluorescence and SPE Adsorption Nanomaterials of Molecularly Imprinted Polymers Based on Quantum Dot-Grafted Covalent Organic Frameworks for the High Selectivity and Sensitivity Detection of Ferulic Acid.
Yu WangYuzhen WangHui-Lin LiuPublished in: Nanomaterials (Basel, Switzerland) (2019)
A fluorescence and solid phase extraction (SPE) adsorption nanomaterials of molecularly imprinted polymers (MIPs) based on quantum dot-grafted covalent organic frameworks (QD-grafted COFs) was prepared by one-pot surface-imprinting synthesis method. Amino groups of silane reagent were at the surface of QDs to coordinate COFs efficiently by Schiff-base reactions, providing thermal and chemical stability to MIPs. It also reacted with the phenolic hydroxyl groups of ferulic acid (FA) through non-covalent interactions. The nanomaterials were used as fluorescence sensing and SPE adsorption toward determination of ferulic acid. The MIPs based on QD-grafted COFs had good fluorescence response ability, and quenching linearly at concentrations of ferulic acid from 0.03 to 60 mg kg-1, with a detection limit of 5 µg kg-1. At the same time, it exhibited a good SPE adsorption ability, and the FA extraction was from 1.63 to 3.11 mg kg-1 in grain by-products by SPE coupled with high performance liquid chromatography/mass spectrometry (HPLC/MS). The fluorescence and SPE-HPLC/MS were used for the efficient detection of ferulic acid in real samples with recovery values of 88⁻114% and 90⁻97%, respectively. Furthermore, the nanomaterials of MIPs based on QD-grafted COFs were used for FA detection with high sensitivity and selectivity, and it also increased the recycling of waste resources.
Keyphrases
- solid phase extraction
- molecularly imprinted
- high performance liquid chromatography
- liquid chromatography
- mass spectrometry
- liquid chromatography tandem mass spectrometry
- tandem mass spectrometry
- simultaneous determination
- gas chromatography mass spectrometry
- gas chromatography
- ultra high performance liquid chromatography
- ms ms
- single molecule
- energy transfer
- loop mediated isothermal amplification
- multiple sclerosis
- real time pcr
- high resolution