Login / Signup

A characteristic nonlinear distortion length for broadband Gaussian noise.

Michael B MuhlesteinKent L Gee
Published in: The Journal of the Acoustical Society of America (2023)
The nonlinear evolution of high-amplitude broadband noise is important to the psychoacoustic perception, usually annoyance, of high-speed jet noise. One method to characterize the nonlinear evolution of such noise is to consider a characteristic nonlinear waveform distortion length for the signal. A common length scale for this analysis is the shock formation distance of an initially sinusoidal signal. However, application of this length scale to broadband noise, even with the amplitude and source frequency replaced with characteristic values, may lead to underestimates of the overall nonlinear waveform distortion of the noise as indicated by the skewness of the time derivative of the acoustic pressure (or derivative skewness). This paper provides an alternative length scale derived directly from the evolution of the derivative skewness of Gaussian noise that may be more appropriate when analyzing the nonlinear evolution of broadband noise signals. This Gaussian-based length scale is shown to be a useful metric for its relative consistency and its physical interpretation. Various analytical predictions of the evolution of the derivative skewness for an ensemble of numerical simulations of noise propagation are used to highlight various aspects of this new length scale definition.
Keyphrases
  • air pollution
  • high speed
  • mental health
  • physical activity
  • mass spectrometry
  • high frequency
  • deep learning
  • liquid chromatography
  • functional connectivity