Login / Signup

C0.3N0.7Ti-SiC Toughed Silicon Nitride Hybrids with Non-Oxide Additives Ti3SiC2.

Heng LuoChen LiLianwen DengYang LiPeng XiaoHaibin Zhang
Published in: Materials (Basel, Switzerland) (2020)
In situ grown C0.3N0.7Ti and SiC, which derived from non-oxide additives Ti3SiC2, are proposed to densify silicon nitride (Si3N4) ceramics with enhanced mechanical performance via hot-press sintering. Remarkable increase of density from 79.20% to 95.48% could be achieved for Si3N4 ceramics with 5 vol.% Ti3SiC2 when sintered at 1600 °C. As expected, higher sintering temperature 1700 °C could further promote densification of Si3N4 ceramics filled with Ti3SiC2. The capillarity of decomposed Si from Ti3SiC2, and in situ reaction between nonstoichiometric TiCx and Si3N4 were believed to be responsible for densification of Si3N4 ceramics. An obvious enhancement of flexural strength and fracture toughness for Si3N4 with x vol.% Ti3SiC2 (x = 1~20) ceramics was observed. The maximum flexural strength of 795 MPa for Si3N4 composites with 5 vol.% Ti3SiC2 and maximum fracture toughness of 6.97 MPa·m1/2 for Si3N4 composites with 20 vol.% Ti3SiC2 are achieved via hot-press sintering at 1700 °C. Pull out of elongated Si3N4 grains, crack bridging, crack branching and crack deflection were demonstrated to dominate enhance fracture toughness of Si3N4 composites.
Keyphrases
  • room temperature
  • gold nanoparticles