Login / Signup

New phylogenetic insights into the African catfish families Mochokidae and Austroglanididae.

Frederic D B SchedelAlbert ChakonaBrian L SidlauskasMichael O PopoolaNadine Usimesa WingiDirk NeumannEmmanuel J W M N VrevenUlrich K Schliewen
Published in: Journal of fish biology (2022)
Several hundred catfish species (order: Siluriformes) belonging to 11 families inhabit Africa, of which at least six families are endemic to the continent. Although four of those families are well-known to belong to the 'Big-Africa clade', no previous study has addressed the phylogenetic placement of the endemic African catfish family Austroglanididae in a comprehensive framework with molecular data. Furthermore, interrelationships within the 'Big-Africa clade', including the most diverse family Mochokidae, remain unclear. This study was therefore designed to help reconstruct inter- and intrarelationships of all currently valid mochokid genera, to infer their position within the 'Big Africa clade' and to establish a first molecular phylogenetic hypothesis of the relationships of the enigmatic Austroglanididae within the Siluriformes. We assembled a comprehensive mitogenomic dataset comprising all protein coding genes and representing almost all recognized catfish families (N = 33 of 39) with carefully selected species (N = 239). We recovered the monophyly of the previously identified multifamily clades 'Big Asia' and 'Big Africa' and determined Austroglanididae to be closely related to Pangasiidae, Ictaluroidea and Ariidae. Mochokidae was recovered as the sister group to a clade encompassing Auchenoglanididae, Claroteidae, Malapteruridae and the African Schilbeidae, albeit with low statistical support. The two mochokid subfamilies Mochokinae and Chiloglanidinae as well as the chiloglanid tribe Atopochilini were recovered as reciprocally monophyletic. The genus Acanthocleithron forms the sister group of all remaining Mochokinae, although with low support. The genus Atopodontus is the sister group of all remaining Atopochilini. In contrast to morphological reconstructions, the monophyly of the genus Chiloglanis was strongly supported in our analysis, with Chiloglanis macropterus nested within a Chiloglanis sublineage encompassing only other taxa from the Congo drainage. This is an important result because the phylogenetic relationships of C. macropterus have been controversial in the past, and because we and other researchers assumed that this species would be resolved as sister to most or all other members of Chiloglanis. The apparent paraphyly of Synodontis with respect to Microsynodontis provided an additional surprise, with Synodontis punu turning out to be the sister group of the latter genus.
Keyphrases
  • big data
  • machine learning
  • magnetic resonance
  • gene expression
  • dna methylation
  • magnetic resonance imaging
  • computed tomography
  • transcription factor
  • deep learning
  • diffusion weighted imaging