Login / Signup

Giant Temperature Coefficient of Resistivity and Cryogenic Sensitivity in Silicon with Galvanically Displaced Gold Nanoparticles in Freeze-Out Region.

Seung-Hoon LeeSeongpil HwangJae Won Jang
Published in: ACS nano (2017)
The temperature coefficient of resistivity (TCR) and cryogenic sensitivity (Sv) of p-type silicon (p-Si) in the low-temperature region (10-30 K) are remarkably improved by increasing the coverage of galvanically displaced Au nanoparticles (NPs). By increase of the galvanic displacement time from 10 to 30 s, the average surface roughness (Ra) of the samples increases from 0.31 to 2.31 nm and the coverage rate of Au NPs increases from 3.1% to 21.9%. In the freeze-out region of the sample, an up to 103% increase of TCR and dramatically improved Sv of p-Si (∼5813%) are observed with Au coverage of 21.9% compared to p-Si without galvanically displaced Au NPs. By means of a finite element method (FEM) simulation study, it was found that the increase of surface roughness and a number of Au NPs on p-Si results in a higher temperature gradient and thermoelectric power to cause the unusual TCR and Sv values in the samples.
Keyphrases