Login / Signup

Corrosion Inhibition of Azo Compounds Derived from Schiff Bases on Mild Steel (XC70) in (HCl, 1 M DMSO) Medium: An Experimental and Theoretical Study.

Ammar ZobeidiSalah Neghmouche NacerSalem AtiaLatifa KribaaAicha KerassaAbasse KamarchouMousa AlNoaimiDjamel GhernaoutMohamed A AliAbdelmajeed Adam LagumNoureddine Elboughdiri
Published in: ACS omega (2023)
The inhibitory activity of three prepared azo compounds derived from Schiff bases, namely, bis[5-(phenylazo)-2-hydroxybenzaldehyde]-4,4'-diaminophenylmethane (C1), bis[5-(4-methylphenylazo)-2-hydroxybenzaldehyde]-4,4'-diaminophenylmethane (C2), and bis[5-(4-bromophenylazo)-2-hydroxybenzaldehyde]-4,4'-diaminophenylmethane (C3), against corrosion of steel type XC70 in (HCl, 1 M DMSO) medium was investigated experimentally by electrochemical measurements and theoretically using density functional theory (DFT). The correlation between corrosion inhibition and concentration is direct. The maximum inhibition efficiency at 6 × 10 -5 M for the three azo compounds derived from Schiff bases was 64.37, 87.27, and 55.47% for C1, C2, and C3, respectively. The Tafel curves indicate that the inhibitors follow a mixed but predominantly anodic inhibitor system and have a Langmuir isothermal adsorption process. The observed inhibitory behavior of compounds was supported by DFT calculation. It was also found that there was a strong correspondence between the theoretical and experimental results.
Keyphrases
  • density functional theory
  • ionic liquid
  • molecular dynamics
  • gold nanoparticles
  • molecular dynamics simulations
  • high resolution
  • african american
  • aqueous solution