Login / Signup

Highly Ordered Nanoporous Carbon Scaffold with Controllable Wettability as the Microporous Layer for Fuel Cells.

Muhammad Naoshad IslamUdit ShrivastavaMarwa AtwaXiaoan LiViola BirssKunal Karan
Published in: ACS applied materials & interfaces (2020)
We introduce a novel self-standing, nanoporous carbon scaffold (NCS, 25 μm thick), with an ordered inverse opal pore structure (∼85 nm pore) as a microporous layer (MPL) in a polymer electrolyte membrane fuel cell. Unlike previous studies, through chemical functionalization of the pore surfaces, the wettability of the MPL is controllably modified without altering the pore structure. Ex situ environmental scanning electron microscopy experiments revealed water sorption in the hydrophilic NCS under moderate relative humidity (RH) conditions but not in the hydrophobic NCS, wherein water condensation on the surface was noted only at high RH. The influence of structure and wettability of different MPLs on cell performance was gleaned from steady-state cell polarization behavior. For cells operated under dry conditions (≤80% RH), the limiting current for cells with a hydrophilic NCS MPL was the highest while that for cells with a hydrophobic NCS MPL was the lowest regardless of the level of water saturation (RH).
Keyphrases