Login / Signup

Thin Films of Fully Noble Metal-Free POM@MOF for Photocatalytic Water Oxidation.

Grégoire PailleMaria Gomez-MingotCatherine Roch-MarchalMohamed HaouasYouven BenseghirThomas PinoMinh-Huong Ha-ThiGautier LandrotPierre MialaneMarc FontecaveAnne DolbecqCaroline Mellot-Draznieks
Published in: ACS applied materials & interfaces (2019)
P2W18Co4@MOF-545, which contains the sandwich-type polyoxometalate (POM) [(PW9O34)2Co4(H2O)2]10- (P2W18Co4) immobilized in the porphyrinic metal-organic framework (MOF), MOF-545, is a "three-in-one" (porosity + light capture + catalysis) heterogeneous photosystem for the oxygen-evolution reaction (OER). Thin films of this composite were synthesized on transparent and conductive indium tin oxide (ITO) supports using electrophoretic (EP) or drop-casting (DC) methods, thus providing easy-to-use devices. Their electro- and photocatalytic activities for OER were investigated. Remarkably, both types of films exhibit higher turnover numbers (TONs) than the original bulk material previously studied as a suspension for the photocatalytic OER, with TONs after 2 h equal to 1600 and 403 for DC and EP films, respectively, compared to 70 for the suspension. This difference of catalytic activities is related to the proportion of efficiently illuminated crystallites, whereby a DC thin film offers the largest proportion of POM@MOF crystallites exposed to light due to its lower thickness when compared to an EP film or crystals in suspension. Such devices can be easily recycled by simply removing them from the reaction medium and washing them before reuse. The films were fully characterized with extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies, Raman, scanning electron microscopy, and electrochemistry before and after catalysis. The combination of all of these techniques shows the stability of both the POM and the MOF within the composite upon water-oxidation reaction.
Keyphrases