A planet within the debris disk around the pre-main-sequence star AU Microscopii.
Peter PlavchanThomas BarclayJonathan GagnéPeter GaoBryson CaleWilliam MatzkoDiana DragomirSam QuinnDax FelizKeivan G StassunIan J M CrossfieldDavid A BerardoDavid W LathamBen TieuGuillem Anglada-EscudéGeorge RickerRoland VanderspekSara SeagerJoshua N WinnJon M JenkinsStephen RinehartAkshata KrishnamurthyScott DynesJohn DotyFred AdamsDennis A AfanasevChas BeichmanMike BottomBrendan P BowlerCarolyn BrinkworthCarolyn J BrownAndrew CancinoDavid R CiardiMark ClampinJake T ClarkKaren A CollinsCassy DavisonDaniel Foreman-MackeyElise FurlanEric J GaidosClaire GeneserFrank GiddensEmily GilbertRyan HallCoel HellierTodd HenryJonathan HornerAndrew W HowardChelsea HuangJoseph HuberStephen R KaneMatthew A KenworthyJohn F KielkopfDavid KippingChris KlenkeEthan KruseNatasha LatoufPatrick LowranceBertrand MennessonMatthew MengelSean M MillsTim MortonNorio NaritaElisabeth NewtonAmerica NishimotoJack OkumuraEnric PalleJoshua PepperElisa V QuintanaAki RobergeVeronica RoccatagliataJoshua E SchliederAngelle TannerJohanna TeskeC G TinneyAndrew VanderburgKaspar von BraunBernie WalpJason WangSharon Xuesong WangDenise WeigandRussel WhiteRobert A WittenmyerDuncan J WrightAllison YoungbloodHui ZhangPerri ZilbermanPublished in: Nature (2020)
AU Microscopii (AU Mic) is the second closest pre-main-sequence star, at a distance of 9.79 parsecs and with an age of 22 million years1. AU Mic possesses a relatively rare2 and spatially resolved3 edge-on debris disk extending from about 35 to 210 astronomical units from the star4, and with clumps exhibiting non-Keplerian motion5-7. Detection of newly formed planets around such a star is challenged by the presence of spots, plage, flares and other manifestations of magnetic 'activity' on the star8,9. Here we report observations of a planet transiting AU Mic. The transiting planet, AU Mic b, has an orbital period of 8.46 days, an orbital distance of 0.07 astronomical units, a radius of 0.4 Jupiter radii, and a mass of less than 0.18 Jupiter masses at 3σ confidence. Our observations of a planet co-existing with a debris disk offer the opportunity to test the predictions of current models of planet formation and evolution.