Login / Signup

Discrimination between Protonation Isomers of Quinazoline by Ion Mobility and UV-Photodissociation Action Spectroscopy.

Samuel J P MarltonBenjamin I McKinnonBoris UcurJames P BezzinaStephen J BlanksbyAdam J Trevitt
Published in: The journal of physical chemistry letters (2020)
The influence of oriented electric fields on chemical reactivity and photochemistry is an area of increasing interest. Within a molecule, different protonation sites offer the opportunity to control the location of charge and thus orientation of electric fields. New techniques are thus needed to discriminate between protonation isomers in order to understand this effect. This investigation reports the UV-photodissociation action spectroscopy of two protonation isomers (protomers) of 1,3-diazanaphthalene (quinazoline) arising from protonation of a nitrogen at either the 1- or 3-position. It is shown that these protomers are separable by field-asymmetric ion mobility spectrometry (FAIMS) with confirmation provided by UV-photodissociation (PD) action spectroscopy. Vibronic features in the UVPD action spectra and computational input allow assignment of the origin transitions to the S1 and S5 states of both protomers. These experiments also provide vital benchmarks for protomer-specific calculations and examination of isomer-resolved reaction kinetics and thermodynamics.
Keyphrases
  • high resolution
  • single molecule
  • solid state
  • aqueous solution
  • molecular dynamics
  • emergency department
  • mass spectrometry
  • electronic health record
  • drug induced