Rapid microbial methanogenesis during CO 2 storage in hydrocarbon reservoirs.
Rebecca L TynePeter H BarryM LawsonD J ByrneOliver WarrH XieD J HillegondsM FormoloZ M SummersB SkinnerJohn M EilerChris J BallentinePublished in: Nature (2021)
Carbon capture and storage (CCS) is a key technology to mitigate the environmental impact of carbon dioxide (CO 2 ) emissions. An understanding of the potential trapping and storage mechanisms is required to provide confidence in safe and secure CO 2 geological sequestration 1,2 . Depleted hydrocarbon reservoirs have substantial CO 2 storage potential 1 , 3 , and numerous hydrocarbon reservoirs have undergone CO 2 injection as a means of enhanced oil recovery (CO 2 -EOR), providing an opportunity to evaluate the (bio)geochemical behaviour of injected carbon. Here we present noble gas, stable isotope, clumped isotope and gene-sequencing analyses from a CO 2 -EOR project in the Olla Field (Louisiana, USA). We show that microbial methanogenesis converted as much as 13-19% of the injected CO 2 to methane (CH 4 ) and up to an additional 74% of CO 2 was dissolved in the groundwater. We calculate an in situ microbial methanogenesis rate from within a natural system of 73-109 millimoles of CH 4 per cubic metre (standard temperature and pressure) per year for the Olla Field. Similar geochemical trends in both injected and natural CO 2 fields suggest that microbial methanogenesis may be an important subsurface sink of CO 2 globally. For CO 2 sequestration sites within the environmental window for microbial methanogenesis, conversion to CH 4 should be considered in site selection.