Tonotopic Ca 2+ dynamics and sound processing in auditory interneurons of the bush-cricket Mecopoda elongata.
T BayleyBerthold HedwigPublished in: Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology (2023)
Two auditory neurons, TN-1 and ON-1, in the bush-cricket, Mecopoda elongata, have large dendritic arborisations which receive excitatory synaptic inputs from tonotopically organised axonal terminals of auditory afferents in the prothoracic ganglion. By combining intracellular microelectrode recording with calcium imaging we demonstrate that the dendrites of both neurons show a clear Ca 2+ signal in response to broad-frequency species-specific chirps. Due to the organisation of the afferents frequency specific auditory activation should lead to local Ca 2+ increases in their dendrites. In response to 20 ms sound pulses the dendrites of both neurons showed tonotopically organised Ca 2+ increases. In ON-1 we found no evidence for a tonotopic organisation of the Ca 2+ signal related to axonal spike activity or for a Ca 2+ response related to contralateral inhibition. The tonotopic organisation of the afferents may facilitate frequency-specific adaptation in these auditory neurons through localised Ca 2+ increases in their dendrites. By combining 10 and 40 kHz test pulses and adaptation series, we provide evidence for frequency-specific adaptation in TN-1 and ON-1. By reversible deactivating of the auditory afferents and removing contralateral inhibition, we show that in ON-1 spike activity and Ca 2+ responses increased but frequency-specific adaptation was not evident.