Login / Signup

Genetic Polymorphisms and Genetic Risk Scores Contribute to the Risk of Coronary Artery Disease (CAD) in a North Indian Population.

Sarabjit Singh MastanaKushni Charisma HalaiElizabeth C AkamDavid John HunterPuneetpal Singh
Published in: International journal of molecular sciences (2024)
Coronary artery disease (CAD) is the leading cause of death in India. Many genetic polymorphisms play a role in regulating oxidative stress, blood pressure and lipid metabolism, contributing to the pathophysiology of CAD. This study examined the association between ten polymorphisms and CAD in the Jat Sikh population from Northern India, also considering polygenic risk scores. This study included 177 CAD cases and 175 healthy controls. The genetic information of GSTM1 (rs366631), GSTT1 (rs17856199), ACE (rs4646994), AGT M235T (rs699), AGT T174M (rs4762), AGTR1 A1166C (rs5186), APOA5 (rs3135506), APOC3 (rs5128), APOE (rs7412) and APOE (rs429358) and clinical information was collated. Statistical analyses were performed using SPSS version 27.0 and SNPstats. Significant independent associations were found for GST*M1 , GST*T1 , ACE , AGT M235T, AGT T174M, AGTR1 A1166C and APOA5 polymorphisms and CAD risk (all p < 0.05). The AGT CT haplotype was significantly associated with a higher CAD risk, even after controlling for covariates (adjusted OR = 3.93, 95% CI [2.39-6.48], p < 0.0001). The APOA5/C3 CC haplotype was also significantly associated with CAD (adjusted OR = 1.86, 95% CI [1.14-3.03], p < 0.05). A higher polygenic risk score was associated with increased CAD risk (adjusted OR = 1.98, 95% CI [1.68-2.34], p < 0.001). Seven polymorphisms were independently associated with an increase in the risk of CAD in this North Indian population. A considerable risk association of AGT , APOA5/C3 haplotypes and higher genetic risk scores is documented, which may have implications for clinical and public health applications.
Keyphrases