Suitable Surface Oxygen Concentration on Copper Contributes to the Growth of Large Graphene Single Crystals.
Siyu WuWei ZhaoXinliang YangYijun ChenWenjie WuYenan SongQinghong YuanPublished in: The journal of physical chemistry letters (2019)
In this Letter, we found that the growth of graphene on Cu oxide foil is significantly affected by the concentration of oxygen. The grain size of graphene grown on a Cu substrate with a relatively high oxygen concentration is much smaller than that on the substrate with lower oxygen concentration. By controlling the oxidation of the Cu substrate at a proper degree, we can obtain millimeter scale graphene single crystals at a growth temperature of 1050 °C. On the basis of our experimental observations, the dual role of oxygen in the CVD growth of graphene was revealed: (i) Oxygen on a Cu surface can contribute to the decomposition of hydrocarbon feedstock and decrease the graphene growth barrier, resulting in an increased growth rate and a larger grain size of graphene; (ii) excess oxygen in the Cu substrate leads to etching of the graphene edge. Our research provides insights to obtain large-area and single-crystalline graphene by choosing a proper Cu oxide substrate.