Sex differences in diaphragmatic fatigue: the cardiovascular response to inspiratory resistance.
Joseph F WelchBruno ArchizaJordan A GuenetteChristopher R WestAndrew William SheelPublished in: The Journal of physiology (2018)
Diaphragmatic fatigue (DF) elicits reflexive increases in sympathetic vasomotor outflow (i.e. metaboreflex). There is some evidence suggesting women may be more resistant to DF compared to men, and therefore may experience an attenuated inspiratory muscle metaboreflex. To this end, we sought to examine the cardiovascular response to inspiratory resistance in healthy young men (n = 9, age = 24 ± 3 years) and women (n = 9, age = 24 ± 3 years). Subjects performed isocapnic inspiratory pressure-threshold loading (PTL, 60% maximal inspiratory mouth pressure) to task failure. Diaphragmatic fatigue was assessed by measuring transdiaphragmatic twitch pressure (Pdi,tw ) using cervical magnetic stimulation. Heart rate (HR) and mean arterial pressure (MAP) were measured beat-by-beat throughout PTL via photoplethysmography, and low-frequency systolic pressure (LFSBP ; a surrogate for sympathetic vasomotor tone) calculated from arterial waveforms using power spectrum analysis. At PTL task failure, the degree of DF was similar between sexes (∼23% reduction in Pdi,tw ; P = 0.33). However, time to task failure was significantly longer in women than in men (27 ± 11 vs. 16 ± 11 min, respectively; P = 0.02). Women exhibited less of an increase in HR (13 ± 8 vs. 19 ± 12 bpm; P = 0.02) and MAP (10 ± 8 vs. 14 ± 9 mmHg; P = 0.01), and significantly lower LFSBP (23 ± 11 vs. 34 ± 8 mmHg2 ; P = 0.04) during PTL compared to men. An attenuation of the inspiratory muscle metaboreflex may influence limb and respiratory muscle haemodynamics with implications for exercise performance.
Keyphrases
- heart rate
- polycystic ovary syndrome
- blood pressure
- heart rate variability
- middle aged
- pregnancy outcomes
- skeletal muscle
- sleep quality
- cervical cancer screening
- left ventricular
- heart failure
- insulin resistance
- breast cancer risk
- pregnant women
- physical activity
- depressive symptoms
- resistance training
- atrial fibrillation
- molecularly imprinted
- solid phase extraction