Login / Signup

Near-Unity-Efficiency Energy Transfer from Perovskite to Monolayer Semiconductor through Long-Range Migration and Asymmetric Interfacial Transfer.

Chi ZhangYao ZhangZhishan FangYuzhong ChenZeng ChenHaiping HeHaiming Zhu
Published in: ACS applied materials & interfaces (2021)
van der Waals heterostructures combining perovskites of strong light absorption with atomically thin two-dimensional (2D) transition-metal dichalcogenides (TMDs) hold great potential for light-harvesting and optoelectronic applications. However, current research studies integrating TMDs with low-dimensional perovskite nanomaterials generally suffer from poor carrier/energy transport and harnessing, stemming from poor interfacial interaction due to the nanostructured nature and ligands on surface/interface. To overcome the limitations, here, we report prototypical three-dimensional (3D)/2D perovskite/TMD heterostructures by combing highly smooth and ligand-free CsPbBr3 film with a WSe2 monolayer. We show that the energy transfer at interface occurs through asymmetric two-step charge-transfer process, with ultrafast hole transfer in ∼200 fs and subsequent electron transfer in ∼10 ps, driven by the asymmetric type I band alignment. The energy migration and transfer from CsPbBr3 film to WSe2 can be well described by a one-dimensional diffusion model with a carrier diffusion length of ∼500 nm in CsPbBr3 film. Thanks to the long-range carrier migration and ultrafast interfacial transfer, highly efficient (>90%) energy transfer to WSe2 can be achieved with CsPbBr3 film as thick as ∼180 nm, which can capture most of the light above its band gap. The efficient light and energy harvesting in perovskite/TMD 3D/2D heterostructures suggest great promise in optoelectronic and photonic devices.
Keyphrases
  • energy transfer
  • room temperature
  • electron transfer
  • ionic liquid
  • highly efficient
  • quantum dots
  • transition metal
  • solar cells
  • photodynamic therapy
  • big data
  • solid state
  • reduced graphene oxide