Login / Signup

Heavily Tungsten-Doped Sodium Thioantimonate Solid-State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion.

Xuyong FengHong FangPengcheng LiuNan WuEthan C SelfLiang YinPengbo WangXiang LiPurusottam JenaJagjit NandaDavid Mitlin
Published in: Angewandte Chemie (International ed. in English) (2021)
A strategy for modifying the structure of solid-state electrolytes (SSEs) to reduce the cation diffusion activation energy is presented. Two heavily W-doped sodium thioantimonate SSEs, Na2.895 W0.3 Sb0.7 S4 and Na2.7 W0.3 Sb0.7 S4 are designed, both exhibiting exceptionally low activation energy and enhanced room temperature (RT) ionic conductivity; 0.09 eV, 24.2 mS/cm and 0.12 eV, 14.5 mS/cm. At -15 °C the Na2.895 W0.3 Sb0.7 S4 displays a total ionic conductivity of 5.5 mS/cm. The 30 % W content goes far beyond the 10-12 % reported in the prior studies, and results in novel pseudo-cubic or orthorhombic structures. Calculations reveal that these properties result from a combination of multiple diffusion mechanisms, including vacancy defects, strongly correlated modes and excessive Na-ions. An all-solid-state battery (ASSB) using Na2.895 W0.3 Sb0.7 S4 as the primary SSE and a sodium sulfide (Na2 S) cathode achieves a reversible capacity of 400 mAh g-1 .
Keyphrases