First Step Towards Larger DNA-Based Assemblies of Fluorescent Silver Nanoclusters: Template Design and Detailed Characterization of Optical Properties.
Liam E YourstonAlexander Y LushnikovOleg A ShevchenkoKirill A AfoninAlexey Viktorovich KrasnoslobodtsevPublished in: Nanomaterials (Basel, Switzerland) (2019)
Besides being a passive carrier of genetic information, DNA can also serve as an architecture template for the synthesis of novel fluorescent nanomaterials that are arranged in a highly organized network of functional entities such as fluorescent silver nanoclusters (AgNCs). Only a few atoms in size, the properties of AgNCs can be tuned using a variety of templating DNA sequences, overhangs, and neighboring duplex regions. In this study, we explore the properties of AgNCs manufactured on a short DNA sequence-an individual element designed for a construction of a larger DNA-based functional assembly. The effects of close proximity of the double-stranded DNA, the directionality of templating single-stranded sequence, and conformational heterogeneity of the template are presented. We observe differences between designs containing the same AgNC templating sequence-twelve consecutive cytosines, (dC)12. AgNCs synthesized on a single "basic" templating element, (dC)12, emit in "red". The addition of double-stranded DNA core, required for the larger assemblies, changes optical properties of the silver nanoclusters by adding a new population of clusters emitting in "green". A new population of "blue" emitting clusters forms only when ssDNA templating sequence is placed on the 5' end of the double-stranded core. We also compare properties of silver nanoclusters, which were incorporated into a dimeric structure-a first step towards a larger assembly.
Keyphrases
- circulating tumor
- single molecule
- cell free
- nucleic acid
- quantum dots
- fluorescent probe
- gold nanoparticles
- living cells
- label free
- sensitive detection
- binding protein
- energy transfer
- mass spectrometry
- circulating tumor cells
- gene expression
- dendritic cells
- healthcare
- silver nanoparticles
- amino acid
- dna methylation
- molecular dynamics
- copy number
- simultaneous determination
- solid phase extraction