Login / Signup

Solvent-Dependent Nanostructures Based on Active π-Aggregation Induced Emission Enhancement of New Carbazole Derivatives of Triphenylacrylonitrile.

Santu MaityKrishnendu AichChandraday ProdhanKeya ChaudhuriAjoy Kumar PramanikSiddhartha DasJhuma Ganguly
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2019)
In the present study, the carbazole and 2,3,3-triphenylacrylonitrile (TPAN) nanostructures (2-CTPAN and 2,2'-CTPAN) have been designed and synthesized by Pd-catalyzed Sonogashira cross-coupling reaction. CTPAN exhibit aggregation-induced emission enhancement (AIEE) behavior in water with high fluorescence quantum yield. Both the compounds show tunable self-assembly in water as well as in N,N-dimethylformamide (DMF) by extended π-π stacking interactions. CTPAN can be self-assembled into spherical particles in water and the structures of these self-assemblies have been investigated using X-ray diffraction. Interestingly, 2-CTPAN and 2,2'-CTPAN form organogels with a critical gelation concentration (CGC) of 11 and 15 mg mL-1 , respectively, in DMF and exhibit acicular and rod shaped morphology, respectively. The single-crystal structure of 2-CTPAN shows that the intermolecular C-H⋅⋅⋅π interactions lock the molecular conformation into a staircase-shaped supramolecular assembly. These AIEE active compounds reveal high water dispersibility, strong yellow fluorescence with high quantum yield, promising photostability and excellent biocompatibility, which make them potential bioimaging agents.
Keyphrases