Login / Signup

Poly-tetrahydropyrimidine Antibacterial Hydrogel with Injectability and Self-Healing Ability for Curing the Purulent Subcutaneous Infection.

Yongchang TianLong PangRong ZhangTaimin XuSong WangBing YuLilong GaoHailin CongYouqing Shen
Published in: ACS applied materials & interfaces (2020)
Infections caused by pathogenic microorganisms have always been the Achilles heel in the clinic. In this work, to overcome this conundrum, we proposed an injectable multifunctional hydrogel material with outstanding antibacterial properties and self-healing properties and no adverse effects on health. The cross-linked hydrogel with three-dimensional (3D) networks was quickly formed via the dynamic Schiff base between amino-modified poly-tetrahydropyrimidine (PTHP-NH2) and multiple vanillin polymer P(DMA-VA) in 30 s. This hydrogel composite presents effective defense against both Gram-positive and Gram-negative bacteria, especially for the pyogenic Staphylococcus aureus. Moreover, the hydrogel showed almost no hemolysis and cytotoxicity. In vivo investigations indicated that hydrogels effectively killed S. aureus and protected against deterioration of inflammation. Besides, bioimaging of mice demonstrated that the hydrogel could be completely metabolized within 16 h. In a nutshell, given its outstanding antibacterial property and biocompatibility, the novel hydrogel could be an ideal candidate for the subcutaneous infection application.
Keyphrases