Login / Signup

Superchiral Plasmonic Phase Sensitivity for Fingerprinting of Protein Interface Structure.

Ryan TulliusGeoffrey W PlattLarousse Khosravi KhorashadNikolaj GadegaardAdrian J LapthornVincent M RotelloGraeme CookeLaurence D BarronAlexander O GovorovAffar S KarimullahMalcolm Kadodwala
Published in: ACS nano (2017)
The structure adopted by biomaterials, such as proteins, at interfaces is a crucial parameter in a range of important biological problems. It is a critical property in defining the functionality of cell/bacterial membranes and biofilms (i.e., in antibiotic-resistant infections) and the exploitation of immobilized enzymes in biocatalysis. The intrinsically small quantities of materials at interfaces precludes the application of conventional spectroscopic phenomena routinely used for (bio)structural analysis due to a lack of sensitivity. We show that the interaction of proteins with superchiral fields induces asymmetric changes in retardation phase effects of excited bright and dark modes of a chiral plasmonic nanostructure. Phase retardations are obtained by a simple procedure, which involves fitting the line shape of resonances in the reflectance spectra. These interference effects provide fingerprints that are an incisive probe of the structure of interfacial biomolecules. Using these fingerprints, layers composed of structurally related proteins with differing geometries can be discriminated. Thus, we demonstrate a powerful tool for the bioanalytical toolbox.
Keyphrases