Photoelectrochemical Reduction of Carbon Dioxide to Methanol through a Highly Efficient Enzyme Cascade.
Su Keun KukRaushan K SinghDong Heon NamRanjitha SinghJung-Kul LeeChan Beum ParkPublished in: Angewandte Chemie (International ed. in English) (2017)
Natural photosynthesis is an effective route for the clean and sustainable conversion of CO2 into high-energy chemicals. Inspired by the natural process, a tandem photoelectrochemical (PEC) cell with an integrated enzyme-cascade (TPIEC) system was designed, which transfers photogenerated electrons to a multienzyme cascade for the biocatalyzed reduction of CO2 to methanol. A hematite photoanode and a bismuth ferrite photocathode were applied to fabricate the iron oxide based tandem PEC cell for visible-light-assisted regeneration of the nicotinamide cofactor (NADH). The cell utilized water as an electron donor and spontaneously regenerated NADH. To complete the TPIEC system, a superior three-dehydrogenase cascade system was employed in the cathodic part of the PEC cell. Under applied bias, the TPIEC system achieved a high methanol conversion output of 220 μm h-1 , 1280 μmol g-1 h-1 using readily available solar energy and water.