Login / Signup

Rhodium(III) Dihalido Complexes: The Effect of Ligand Substitution and Halido Coordination on Increasing Cancer Cell Potency.

Rianne M LordMarkus ZegkeAida M BasriChristopher M PaskPatrick C McGowan
Published in: Inorganic chemistry (2021)
This work presents the synthesis of eight new rhodium(III) dihalido complexes, [RhX2(L)(LH)] (where X = Cl or I), which incorporate two bidentate N-(3-halidophenyl)picolinamide ligands. The ligands have different binding modes in the complexes, whereby one is neutral and bound via N,N (LH) coordination, while the other is anionic and bound via N,O (L) coordination. The solid state and solution studies confirm multiple isomers are present when X = Cl; however, after a halide exchange with potassium iodide (X = I) the complexes exist exclusively as single stable trans isomers. NMR studies reveal the Rh(III) trans diiodido complexes remain stable in aqueous solution with no ligand exchange reported over 96 h. Chemosensitivity data against a range of cancer cell lines show two cytotoxic complexes, where L = N-(3-bromophenyl)picolinamide ligand. The results have been compared to the analogous Ru(III) complexes and overall highlight the Rh(III) trans diiodido complex to be ∼78× more cytotoxic than the analogous Rh(III) dichlorido complex, unlike the Ru(III) complexes which are equitoxic against all cell lines. Additionally, the Rh(III) trans diiodido complex is more selective toward cancerous cells, with selectivity index (SI) values >25-fold higher than cisplatin against colorectal carcinoma.
Keyphrases
  • solid state
  • magnetic resonance
  • high resolution
  • gene expression
  • mass spectrometry
  • dna binding
  • deep learning
  • big data
  • signaling pathway
  • transcription factor
  • dna methylation
  • young adults