BODIPY-Based Photodynamic Agents for Exclusively Generating Superoxide Radical over Singlet Oxygen.
Kun-Xu TengWen-Kai ChenLi-Ya NiuWei-Hai FangGanglong CuiQing-Zheng YangPublished in: Angewandte Chemie (International ed. in English) (2021)
Developing Type-I photosensitizers is considered as an efficient approach to overcome the deficiency of traditional photodynamic therapy (PDT) for hypoxic tumors. However, it remains a challenge to design photosensitizers for generating reactive oxygen species by the Type-I process. Herein, we report a series of α,β-linked BODIPY dimers and a trimer that exclusively generate superoxide radical (O2 -. ) by the Type-I process upon light irradiation. The triplet formation originates from an effective excited-state relaxation from the initially populated singlet (S1 ) to triplet (T1 ) states via an intermediate triplet (T2 ) state. The low reduction potential and ultralong lifetime of the T1 state facilitate the efficient generation of O2 -. by inter-molecular charge transfer to molecular oxygen. The energy gap of T1 -S0 is smaller than that between 3 O2 and 1 O2 thereby precluding the generation of singlet oxygen by the Type-II process. The trimer exhibits superior PDT performance under the hypoxic environment.