Login / Signup

Silver Nanoparticles Densely Grafted with Nitroxides as a Recyclable Green Catalyst in the Selective Oxidation of Alcohols.

Agnieszka Krogul-SobczakNatalia PisarekPiotr CieciórskiElżbieta Megiel
Published in: Nanomaterials (Basel, Switzerland) (2022)
The selective oxidation of alcohols, leading to appropriate aldehydes, is widely recognised as one of the most important reactions in organic synthesis. With ever-increasing environmental concerns, much attention has been directed toward developing catalytic protocols that use molecular oxygen as an oxidant. An ideal green oxidation process should employ a highly active, selective and recyclable catalyst that can work with oxygen under mild conditions. This paper presents a successful application of densely grafted silver nanostructures with stable nitroxide radicals (N-AgNPs) as an effective, easily-recovered and regenerable catalyst for the selective oxidation of alcohols. The fabricated ultra-small and narrow dispersive silver nanoparticles have been fully characterised using physicochemical methods (TEM, DLS, XPS, TGA). N-AgNPs have been successfully applied to oxidise several model alcohols: benzyl alcohol, 4-pyridinemethanol, furfuryl alcohol, 1-phenyl ethanol, n-heptanol and allyl alcohol under mild conditions using oxygen as a stoichiometric oxidant. Notably, the fabricated nitroxide grafted silver nanoparticles (N-AgNPs) were reused more than ten times in the oxidation of a series of primary alcohols to corresponding aldehydes under mild conditions with very high yields and a selectivity close to 100%.
Keyphrases