Login / Signup

The Hill function is the universal Hopfield barrier for sharpness of input-output responses.

Rosa Martinez-CorralKee-Myoung NamAngela H DePaceJeremy Gunawardena
Published in: bioRxiv : the preprint server for biology (2024)
The Hill functions, ℋ h ( x ) = x h / 1 + x h , have been widely used in biology for over a century but, with the exception of ℋ 1 , they have had no justification other than as a convenient fit to empirical data. Here, we show that they are the universal limit for the sharpness of any input-output response arising from a Markov process model at thermodynamic equilibrium. Models may represent arbitrary molecular complexity, with multiple ligands, internal states, conformations, co-regulators, etc, under core assumptions that are detailed in the paper. The model output may be any linear combination of steady-state probabilities, with components other than the chosen input ligand held constant. This formulation generalises most of the responses in the literature. We use a coarse-graining method in the graph-theoretic linear framework to show that two sharpness measures for input-output responses fall within an effectively bounded region of the positive quadrant, Ω m ⊂ ℝ + 2 , for any equilibrium model with m input binding sites. Ω m exhibits a cusp which approaches, but never exceeds, the sharpness of ℋ m but the region and the cusp can be exceeded when models are taken away from thermodynamic equilibrium. Such fundamental thermodynamic limits are called Hopfield barriers and our results provide a biophysical justification for the Hill functions as the universal Hopfield barriers for sharpness. Our results also introduce an object, Ω m , whose structure may be of mathematical interest, and suggest the importance of characterising Hopfield barriers for other forms of cellular information processing.
Keyphrases
  • molecular dynamics
  • molecular dynamics simulations
  • aqueous solution
  • systematic review
  • transcription factor
  • big data
  • electronic health record
  • data analysis
  • health information
  • human serum albumin