Login / Signup

Influence of Myrrh Extracts on the Properties of PLA Films and Melt-Spun Multifilament Yarns.

Evaldas BolskisErika AdomavičiūtėEgidijus GriškonisValdas Norvydas
Published in: Materials (Basel, Switzerland) (2020)
A possible approach for providing new properties for textiles is the insertion of natural ingredients into the textile product during the process of its manufacture. Myrrh has long been used in medicine as an antibacterial and antifungal material. Polylactide (PLA) is a thermoplastic synthetic biopolymer obtained from renewable resources-and due its biodegradability, is also widely used in medicine. In this study, films and multifilament yarns from modified biodegradable PLA granules with ethanolic and aqueous myrrh extracts were developed and characterized. Optical microscopy was used to determine the surface morphology of PLA/myrrh multifilament yarns. Tensile tests, ultraviolet-visible (UV-vis), differential scanning calorimetry (DSC) were applied to determine, consequently, mechanical, optical properties and degree of crystallinity of PLA/myrrh films and multifilament yarns. The chemical composition of PLA/myrrh multifilament yarns was estimated by Fourier-transform infrared (FTIR) spectroscopy method. The results showed that it is possible to form PLA melt-spun multifilament yarns with myrrh extract. The type of myrrh extract (ethanolic or aqueous) has a significant influence on the mechanical and optical properties of the PLA films and melt-spun yarns. The mechanical properties of PLA films and melt-spun multifilament yarns formed from PLA granules with aqueous myrrh extract decreased 19% and 21% more than PLA with ethanolic extract, respectively. Analysis of UV-vis spectra showed that, due to the yellow hue, the reflectance of PLA films and melt-spun PLA multifilament yarns modified with myrrh extracts decreased exponentially. The DSC test showed that multifilament yarns from PLA modified with aqueous extract had the highest degree of crystallization.
Keyphrases
  • oxidative stress
  • high resolution
  • room temperature
  • high throughput
  • carbon nanotubes
  • high speed
  • molecular dynamics
  • density functional theory