Login / Signup

Evolution of Polynuclear Gold(I) Sulfido Complexes from Clusters and Cages to Macrocycles.

Liang-Liang YanVivian Wing-Wah Yam
Published in: Journal of the American Chemical Society (2023)
Two unprecedented tetratriacontanuclear and tetraicosanuclear gold(I) sulfido clusters (denoted as Au 34 -L Me and Au 24 -L Cbz ) with different temperature-induced stimulus-responsive behavior and emission property have been constructed by taking advantage of the judiciously designed bidentate phosphine ligand. Au 34 -L Me represents the highest nuclearity of the gold(I) sulfido cluster with more than a thousand atoms in the molecule. Octagonal macrocycles based on metal-cluster nodes have been assembled for the first time. The self-assembly and temperature-induced stimulus-responsive processes were monitored by 1 H and 31 P{ 1 H} NMR spectroscopy, and the identities of the discrete gold(I) complexes were established by single-crystal structural analysis and high-resolution electrospray ionization mass spectrometry data. The steric effects exerted by the substituents on the V-shaped 1,3-bis(diphenylphosphino)benzene ligand have been shown to govern the self-assembly from the 1D cluster and 3D cage to 2D macrocycles. This work not only offers a new strategy to construct and regulate the structure of 2D macrocyclic gold(I) sulfido complexes but also lays the foundation for the future precise design and controlled construction of higher polygonal and cluster-node macrocycles.
Keyphrases