Login / Signup

Reversible Protein Capture and Release by Redox-Responsive Hydrogel in Microfluidics.

Chen JiaoFranziska ObstMartin GeislerYunjiao CheAndreas RichterDietmar AppelhansJens GaitzschBrigitte Voit
Published in: Polymers (2022)
Stimuli-responsive hydrogels have a wide range of potential applications in microfluidics, which has drawn great attention. Double cross-linked hydrogels are very well suited for this application as they offer both stability and the required responsive behavior. Here, we report the integration of poly( N -isopropylacrylamide) (PNiPAAm) hydrogel with a permanent cross-linker ( N,N' -methylenebisacrylamide, BIS) and a redox responsive reversible cross-linker ( N,N' -bis(acryloyl)cystamine, BAC) into a microfluidic device through photopolymerization. Cleavage and re-formation of disulfide bonds introduced by BAC changed the cross-linking densities of the hydrogel dots, making them swell or shrink. Rheological measurements allowed for selecting hydrogels that withstand long-term shear forces present in microfluidic devices under continuous flow. Once implemented, the thiol-disulfide exchange allowed the hydrogel dots to successfully capture and release the protein bovine serum albumin (BSA). BSA was labeled with rhodamine B and functionalized with 2-(2-pyridyldithio)-ethylamine (PDA) to introduce disulfide bonds. The reversible capture and release of the protein reached an efficiency of 83.6% in release rate and could be repeated over 3 cycles within the microfluidic device. These results demonstrate that our redox-responsive hydrogel dots enable the dynamic capture and release of various different functionalized (macro)molecules (e.g., proteins and drugs) and have a great potential to be integrated into a lab-on-a-chip device for detection and/or delivery.
Keyphrases