Login / Signup

Black spot diseases in seven commercial fish species from the English Channel and the North Sea: infestation levels, identification and population genetics of Cryptocotyle spp.

Maureen DuflotPierre CressonMaéva JulienLéa ChartierOdile BourgauMarialetizia PalombaSimonetta MattiucciGraziella MideletMélanie Gay
Published in: Parasite (Paris, France) (2023)
Fish are often speckled with "black spots" caused by metacercarial trematode infection, inducing a host response. Cryptocotyle spp. (Opisthorchiidae) are among the parasites responsible for this phenomenon. So far, the impact on human health is still unknown. In addition, few publications dealing with black spot recovery, identification, distribution and diversity among commercially important fish are available. Moreover, "black spots" have been observed by fishermen on marine fish, revealing an appreciable but unquantified presence in consumed fish. An epidemiological survey of 1,586 fish from seven commercial species (herring, sprat, whiting, pout, dab, flounder, and plaice) was conducted in the Eastern English Channel and the North Sea in January 2019 and 2020. Encysted metacercariae were found in 325 out of 1,586 fish, with a total prevalence of 20.5%. Intensity of infection varied from 1 to 1,104 parasites. The recorded encysted metacercariae were identified either by microscopic examination or with molecular tools. Partial sequences of the mtDNA cox1 gene and of the rDNA ITS region were obtained. Two species of Cryptocotyle, Cryptocotyle lingua (Creplin, 1825) and Cryptocotyle concava (Creplin, 1825) were found. Metacercariae belonging to other trematode families were also identified. Molecular phylogenetic analysis and haplotype network construction were performed to confirm the identification and to study the potential presence of different populations of Cryptocotyle spp. This survey enabled us to describe the distribution of two species of Cryptocotyle in the English Channel and North Sea ecosystems. The observed differences in infestation levels between fish species and geographical areas will contribute to better understanding of the ecology of these parasites.
Keyphrases
  • human health
  • risk assessment
  • climate change
  • tertiary care
  • risk factors
  • plasmodium falciparum
  • mitochondrial dna
  • dna methylation
  • transcription factor